DOI: http://dx.doi.org/10.18782/2320-7051.6019

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **6** (2): 1281-1290 (2018)

Research Article

Diversity and Seasonal Activity of Insect Pollinators Visiting Apple Bloom in Relation to Weather Parameters

Tahmina Mushtaq^{1*}, Sheikh Bilal² and Aziz M. A.³

¹PhD Scholar, SKUAST-K (Shalimar, Sgr) J&K-191121
 ²Professor, Division of Entomology, SKUAST-K (Shalimar, Sgr) J&K-191121
 ³Assistant Professor, Division of Soil Science, SKUAST-K (Shalimar, Sgr) J&K-191121
 *Corresponding Author E-mail: ttttahmina2@gmail.com
 Received: 22.11.2017 | Revised: 30.12.2017 | Accepted: 6.01.2018

ABSTRACT

The studies conducted during 2011& 2012 in three major districts of Kashmir to determine diversity and seasonal activity of pollinators visiting apple bloom revealed that a total of 59 insect visitors belonging to 5 orders and 28 families visit apple bloom. Among these insect visitors 12 species Apis mellifera L., Apis cerana indica F, Bombus funerarius Smith, Xylocopa fenestrata F., Lasioglossum moroi (Fabricius), Halictus confuses Smith, Vespa auraria Smith, Syrphus balteatus De Geer, Eristalis tenax (L.), Musca domestica L., Pieris brassicae (L.) and Coccinella septumpunctata L. were frequently present at all the locations Anantnag, Baramulla and Srinagar. Rests of the insects were occasional visitors visiting the bloom at interrupted intervals. The seasonal activity and abundance of the these visitors vary in relation to environmental variables. The correlation coefficient matrix of apple pollinators in relation to weather parameters illustrated that hymenopterans and lepidopterans showed significant and positive correlation with temperature and light intensity and negative correlation with relative humidity and vice versa was observed for dipterans.

Key words: Apis mellifera L., Apis cerana indica F, Bombus funerarius Smith,

INTRODUCTION

Weather and blossom time plays an important role in pollination of Apple crop¹. Process of pollination is complex and is influenced by several environmental factors like temperature, light intensity, wind, etc. Such factors strongly affect the foraging activity of pollinating insects; appear to act by imposing thresholds which limit the duration of activity⁴. Bee species differ in their responses to climatic conditions and are indicative of their different physiological adaptation and partitioning of food resources in sympatric condition⁵.Bad weather does have an adverse effect on insect activity and therefore affects crosspollination¹⁵. Bee flight is reduced by rain, wind, and cool temperatures, therefore, pollination may fail even though all other factors are favourable¹¹. Different pollinators respond differently to diverse climatic conditions.

Cite this article: Mushtaq, T., Bilal, S. and Aziz, M.A, Diversity and Seasonal Activity of Insect Pollinators Visiting Apple Bloom in Relation to Weather Parameters, *Int. J. Pure App. Biosci.* **6**(2): 1281-1290 (2018). doi: http://dx.doi.org/10.18782/2320-7051.6019

ISSN: 2320 - 7051

The information regarding diversity and seasonal activity of apple pollinators is lacking from Kashmir. The present studies were therefore undertaken in three major districts of Kashmir to determine the diversity and foraging ecology of frequently visiting apple pollinators.

MATERIAL AND METHODS

The Study was conducted during 2011 & 2012 in three major districts of Kashmir valley viz., Anantnag, Baramulla and Srinagar. The observations were after two days of commencement of flowering and continued till 90 per cent flowering was over throughout the day at hourly intervals. The counts of insect visits were taken in one square meter bloom area for fifteen minutes in the beginning of each hour, replicated five times. Atmospheric temperature, relative humidity and light intensity on pollinator activity of released pollinators in the respective locations during the experiment were also recorded. The atmospheric temperature and relative humidity were measured with the help of Aasman type cyclometer (Wet and Dry bulb thermometer) and light intensity was recorded with the help of Luximeter.

RESULTS AND DISCUSSION

Insect visitors of apple orchard ecosystem Insect visitors collected from bloom of apple during 2011 & 2012 are listed in Table 1. A total of 59 insect visitors belonging to 5 orders and 28 families of class insect were recorded from apple bloom from three districts of Kashmir valley. Out of these, 27 insect visitors

belonged to hymenoptera, 24 to diptera, 3 to lepidoptera, 3 to coleopteran and 2 to odonata. Among these insect visitors 12 species Apis mellifera L., Apis cerana indica F, Bombus funerarius Smith, Xylocopa fenestrata F., Lasioglossum moroi (Fabricius), Halictus confuses Smith, Vespa auraria Smith, Syrphus balteatus De Geer, Eristalis tenax (L.), Musca domestica L., Pieris brassicae (L.) and Coccinella septumpunctata L. were frequently present at all the locations Anantnag, Baramulla and Srinagar. Rests of the insects were occasional visitors visiting the bloom at interapted intervals the present findings draw the support from the observations of Raj *et al.*⁹ who reported that apple flowers in Solan (H.P) were visited by 46 species of insects belonging to 5 orders and 17 families of class Insecta. Verma and Chauhan¹³ reported 44 species of which 16 species belonged to hymenopterans, 11 to dipterans, 9 to lepidopterans, 7 to coleopterans and 1 to Hemiptera. Dashad and Sharma³ reported a total of 19 insects belonging to 11 genera under 6 families Kumar⁶ reported a total of 49 insect species, while as Thakur¹² reported 48 species of insects belonging to 5 orders and 18 families of class insect. Differences in number of species recorded by different workers including present investigation are the attributed to differences in agro climatic conditions of the localities, differential adaptability of a particular native species to its local environmental conditions or due to orientation of other insect visitors to apple during bloom.

Order	Family	Genus/Species	Anantnag	Srinagar	Baramulla
Coleoptera	Coccinellidae	Coccinella septumpunctata L.	~	~	✓
		Hippodamia variegata (Goeze)	~	X	✓
	Chrysomelidae	Altica cyanea Weber	~	✓	~
Hymenoptera	Apidae	Apis mellifera L.	√	✓	✓
		Apis cerana indica F.	✓	√	✓
		Eucera vernalis (Morawitz)	Х	~	Х

Table 1: Insect visitors of apple bloom with taxonomic status in three districts of Kashmir during 2011 &2012

ushtaq <i>et al</i>	Int. J	. Pure App. Biosci. 6 (2): 1281-12		1	: 2320 - 70
		Anthophora sp.	✓ ✓	X	<u>√</u>
		Xylocopa fenestrata F.	✓	✓	\checkmark
		Anthophora confuse Smith	✓	Х	\checkmark
		Bombus funerarius Smith	✓	~	\checkmark
		<i>Thyreus nitidulus</i> (Fabricius)	Х	~	Х
		Melissodes bimaculata nulla Laberge	✓	Х	✓
	Halictidae	Lasioglossum morio (Fabricius)	✓	✓	√
		Ceratina hieroglyphica Smith	~	✓	Х
		Halictus confuses Smith	✓	✓	\checkmark
		Ceratina calcerata Robt	✓	Х	Х
		Polistes maculipennis Saussure	Х	✓	Х
	Vespidae	Polistes sp.	X	✓	Х
		Odynerus sp.	✓	✓	Х
		Vespa auraria Smith	✓	✓	✓
Order	Family	Genus/Species	A na nt na g	S ri n a g a	Bar am ulla
	Andrenidae	Andrena gravida Imhoff	X	r ✓	✓
	Ichneumonidae	Pimpla sp.	✓	Х	\checkmark
	Megachilidae	Megachile sp.	X	✓	\checkmark
		Osmia sp.	~	~	Х
	Sphecidae	Pison punctifrons Shuckard	~	✓	X
	Sapygidae	Eusaphyga verticalis (Cresson)	Х	Х	√
	Pompilidae	Pepsis sp	Х	✓	\checkmark
	Tenthredinidae	Athalia proxima Klug	✓	X	\checkmark
	Scoliidae	Megascolia haemorrhoidalis F.	Х	X	✓
	Eumenidae	Rhychium sp	×	√	Х
Diptera	Syrphidae	Eristalis soliatus Walker	✓	✓	\checkmark
		Eristalinus sp.indet.	✓	✓	Х
		Didea fasciata Macquart	Х	✓	\checkmark
		Scaeva pyrastri L	X	✓	✓
		\mathcal{L}			
		Syrphus balteatus De Geer	✓	✓	~

Iushtaq <i>et al</i>	Int. J. Pure App. Biosci. 6 (2): 1281-1290 (2018) ISSN: 2320									
		Sphaerophoria sp.	Х	\checkmark	\checkmark					
		Syritta orientalis (L.)	Х	~	Х					
		Eristalis tenax (L.)	✓	✓	\checkmark					
		Eristalis arbustorum (L.)	✓	Х	Х					
		Eristalis sp.	X	✓	\checkmark					
Order	Family	Genus/Species	А	S	Bar					
			na	ri	am					
			nt	n	ulla					
			na	а						
			g	g						
				a r						
		Sphaerophoria scripta (L.)	~	 ✓	Х					
		Helophilus trivittatus (F.)	X	X	~					
	Bombylidae	Bombylus major L.	X	~	Х					
		Bombylidae sp.	X	✓	Х					
	Bibionidae	Bibio sp.	X	✓	✓					
	Stratiomyiidae	Hermetia illucens L.	Х	~	Х					
	Calliphoridae	Chrysomyia sp.	X	~	~					
		Pseudopyrellia sp.	Х	✓	\checkmark					
	Asilidae	Machinus sp.	Х	✓	\checkmark					
	Fannidae	Fanna sp.	~	✓	Х					
	Muscidae	Musca domestica L.	~	✓	~					
	Sarcophagidae	Sarcophaga sp.	Х	~	Х					
	Dryomyzidae	Dryomyza flaveola (Fabricius)	~	✓	Х					
Lepidopteran	Brassicae	Pieris brassicae L.	✓	✓	✓					
	Pieridae	Cynthia cordui (Linn)	~	✓	Х					
	Pieridae	Colias romonovi Gr. Gosh	✓	X	Х					
Odonata	Coenagrionidae	Ischnura pumilio (Charpentier)	~	~	Х					
	Libellulidae	Libellula quadrimaculata	~	X	\checkmark					

Foraging Activity of Insect pollinators in relation to weather parameters in three different districts of kashmir

ISSN: 2320 - 7051

1. Anantnag

In Anantnag district, the activity of insect visitors *Apis mellifera* L., *Apis cerana indica* F., *Lasioglossum moroi, Xylocopa fenestrata, Halictus confusus,*

Eristalis tenax (L.), Syrphus balteatus De Geer and Musca domestica started during the 2nd standard week (15th April) when the mean temperature and relative humidity were 18°C and 77.5 per cent, respectively (Fig. 1). Peak intensity (number of pollinators/15 $minutes/m^2$) of Apis mellifera L. (4.883), Apis cerana indica F. (4.120), Lasioglossum moroi (3.35), Xylocopa fenestrata (1.213), Halictus confusus. (1.03), were recorded on 23rd April when temperature and relative humidity was 21.5°C and 62.5 per cent, respectively. However, the peak intensity of Eristalis tenax (L.) (2.780), Syrphus balteatus De Geer (1.980) and Musca domestica (1.358), was recorded on 15th April at a temperature 18°C and relative humidity of 77.5 per cent. The activity of Bombus funerarius Smith started from the 4th week of April and its peak population (1.900) was recorded on 28th April when the mean temperature and relative humidity was 20.5°C and 67.5 per cent, respectively. Coccinella septumpunctata L., Vespa auraria Smith and Pieris brassicae started their activity on 3rd week of April and attained their peak population of 1.900, 0.795,

1.350, respectively, on 23rd of April when the mean temperature and relative humidity was 21°C and 62.5 per cent, respectively. The correlation coefficient matrix of apple pollinators in relation to weather parameters presented in Table 2, revealed that the activity of Apis mellifera L.(r=+0.95,+0.91,-0.91), Apis *indica* F. (r=+0.95,+0.90,-0.92), cerana Lasioglossum moroi (r=+0.91,+0.89,-0.89), *Xylocopa fenestrata* (r=+0.73,+0.86,- 0.78), Bombus funerarius (r=+0.89, +0.92, -0.84), Halictus confusus (r=+0.90, +0.89, -0.84), Vespa auraria Smith (r=+0.97, +0.96, -0.95) and *Pieris brassicae* (r=+0.94, +0.91, -0.92) was significantly and positively correlated with temperature and light intensity and negatively correlated with relative humidity. Whereas, significant and negative correlation was found with respect to activity with temperature and light intensity, and positive correlation with relative humidity was recorded for Eristalis tenax (L.) (r=-0.96, -0.99, +0.95), Syrphus balteatus De Geer (r=-0.86,-0.91, +0.77) and Musca domestica (r=-0.96, -0.96, +0.91). However, the activity of Coccinella septumpunctata L. (r=+0.86, +0.86,-0.85) was positively correlated with temperature and light intensity and negatively correlated with relative humidity but the effect was nonsignificant.

Weather parameters	Pollinators/15 minutes											
•	Am	Ac	L	Х	В	V	Н	Е	S	m	Р	с
Temperatur e	0.951**	0.950* *	0.910* *	0.738* *	0.898*	0.975* *	0.900**	- 0.968**	- 0.836**	-0.960*	0.944**	0.861
Relative humidity	- 0.913**	- 0.921* *	- 0.892* *	- 0.789*	- 0.848*	- 0.954* *	-0.847*	0.935**	0.774*	0.912**	0.926**	-0.855
Solar intensity	0.912**	0.900* *	0.895* *	0.561	0.926* *	0.964* *	0.894*	- 0.991**	- 0.919**	- 0.961**	0.912**	0.868

 Table 2: Correlation between weather parameters and pollinators during 2011 & 2012 in Anantnag

**significant at 1% level, *significant at 5% level

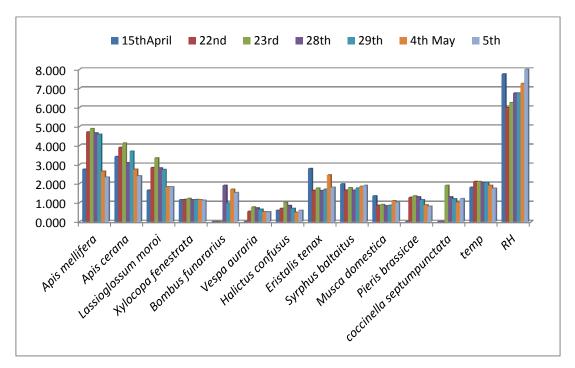


Fig. 1: Intensity and period of activity of insect visitors on Red Delicious cultivar of apple in district Anantnag

2. Srinagar

In district Srinagar, the activity of insect visitors Apis mellifera L., Apis cerana indica F., Lasioglossum moroi, Xylocopa fenestrata, Halictus confusus, *Eristalis tenax* (L.), Syrphus balteatus De Geer and Musca *domestica* started during the 2^{nd} standard week (13th April) when the mean temperature and relative humidity were 17.8°C and 75.5 per cent, respectively (Fig. 2). Peak intensity (number of pollinators/15minutes/ m^2) of Apis mellifera L.(4.20), Apis cerana indica F. (4.12), Lasioglossum moroi. (2.34), Xylocopa fenestrata F. (1.13), Halictus confusus (0.816), were recorded on 24th April when temperature and relative humidity was 21°C and 57.5 per cent, respectively. However, the peak intensity of Eristalis tenax (L.) (2.017), Syrphus balteatus De Geer (1.733) and Musca domestica (1.388), was recorded 13th April at a temperature $(17.5^{\circ}C)$ and relative humidity of 75.5 per cent. The activity of Bombus *funerarius* Smith started from the 4th week of April and its peak population (0.810) was

recorded on 24th April when the mean temperature and relative humidity was 21°C and 57.5 per cent, respectively. Coccinella septumpunctata L., Vespa auraria Smith and *Pieris brassicae* started their activity on 3rd week of April and attained their peak population of 1.50, 0.822 and 0.825, respectively on 24th of April when the mean temperature and relative humidity was 21°C and 57.5 per cent, respectively. The correlation coefficient matrix of apple pollinators in relation to weather parameters presented in Table 3.revealed that the activity of Apis mellifera L. (r=+0.94, +0.97, -0.97), Apis cerana indica F. (r=+0.89, +0.91, -0.92), Lasioglossum moroi (r=+0.99, +0.96, -0.89), *Xylocopa fenestrata* (r=+0.81, +0.86, -0.82), Bombus funerarius (r=+0.96, +0.92, -0.92), Halictus confusus (r=+0.95, +0.97, -0.96), Vespa auraria Smith (r=+0.95, +0.98, -0.97) and Pieris brassicae (r=+0.93, +0.94, -0.94)was significantly and positively correlated with temperature and light intensity and negatively correlated with relative humidity.

Mushtaq <i>et al</i>	Int. J. Pure App. Biosci. 6 (2): 1281-1290 (2018)	ISSN: 2320 – 7051
Table 2. Completi	on between weether nerometers and nellineters during 2011	P- 2012 in Swinggon

	able 5. C	Ullelatio	II Detwee	n weath	ei paran	leters and	pomnat	ors during	3 2011 a 2	2012 11 51	magai	
Weather parameter		Pollinators/15 minutes										
parameter	Am	Ac	L	X	В	V	Н	Е	S	М	Р	С
Temperature	0.946**	0.898**	0.997**	0.817*	0.968**	0.953**	0.959**	0.989**	-0.892**	-0.940**	0.932**	0.573
Relative humidity	-0.965**	- 0.920**	- 0.972**	- 0.825*	- 0.929**	-0.978**	- 0.964**	0.985**	0.910**	0.926**	-0.946**	- 0.525
Solar intensity	0.970**	0.919**	0.960**	0.863*	0.925**	0.986**	0.970**	-0.983**	-0.938**	-0.940**	0.946**	0.488

**Significant at 1% level, *significant at 5% level

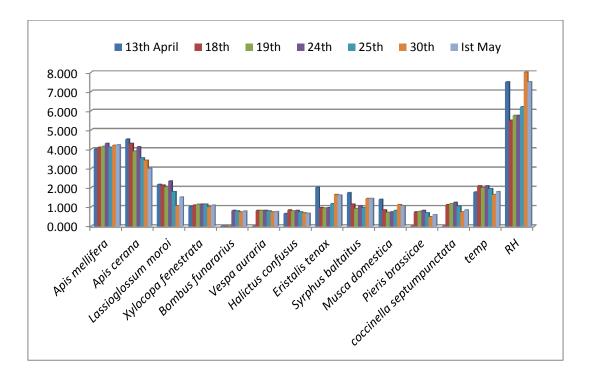


Fig. 2: Intensity and period of activity of insect visitors on Red Delicious cultivar of apple in district Srinagar

Whereas, significant and negative correlation was found with respect to activity with temperature and light intensity, and positive correlation with relative humidity was recorded for *Eristalis tenax* (L.) (r=-0.98, -0.98, +0.98), *Syrphus balteatus* De Geer (r=-0.89, -0.93, +0.91) and *Musca domestica* (r=-0.94, -0.94, +0.92). However the activity of *Coccinella septumpunctata* L.(r=+0.57, +0.48, -0.52) was positively correlated with temperature and light intensity and negatively correlated with relative humidity but the effect was non-significant.

3. Baramulla

In district Baramulla, the activity of insect visitors Apis mellifera L., Apis cerana indica F., Lasioglossum moroi, Xylocopa fenestrata, Halictus confusus, Eristalis tenax (L.), Syrphus balteatus De Geer and Musca Copyright © March-April, 2018; IJPAB

domestica started during the 2nd standard week (14th April) when the mean temperature and relative humidity were 15.8°C and 80.5 per cent, respectively (Fig. 3). Peak intensity (number of pollinators/15minutes/m²) of Apis mellifera L.(5.50), Apis cerana indica F.(3.16), Lasioglossum moroi (1.96),fenestrata F. (1.26), Halictus *Xylocopa* confusus (0.82), were recorded on 26th April when temperature and relative humidity was 22.4°C and 58.5 per cent, respectively. However, the peak intensity of Eristalis tenax (L.) (2.314), Syrphus balteatus De Geer (1.458) and Musca domestica (1.025), was recorded 14th April at a temperature (15.8°C) and relative humidity of 80.5 per cent. The activity of Bombus funerarius Smith started from the 4th week of April and its peak population (0.943) was recorded on 26th April

Mushtaq et al

Int. J. Pure App. Biosci. 6 (2): 1281-1290 (2018)

when the mean temperature and relative humidity was 22.4°C and 58.5 per cent, respectively. *Coccinella septumpunctata* L., *Vespa auraria* Smith and *Pieris brassicae* started their activity on 3rd week of April and attained their peak population of 1.50, 0.84 and 1.06, respectively on 26th of April when the mean temperature and relative humidity was 22.4°C and 58.5 per cent, respectively. The correlation coefficient matrix of apple pollinators in relation to weather parameters presented in Table 4, revealed that the activity of *Apis mellifera* L. (r=+0.87, +0.91, -0.87), *Apis cerana indica* F. (r=+0.91, +0.93, -0.88),

Table 4: Correlation between weather	narameters and	pollingtors during	2011 & 2012 in Baramulla
Table 4. Correlation between weather	par ameters and	pomnators uur mg	2011 & 2012 III Dal alliulla

Weather		Pollinators/15 minutes										
parameters	Am	Ac	L	Х	В	v	Н	Е	S	m	Р	С
Temperature	0.879**	0.912**	0.965**	0.935**	0.954** *	0.926**	0.798*	-0.943**	-0.926**	-0.263*	0.914**	0.472
Relative humidity	-0.874*	-0.880*	-0.88**	-0.887**	-0.900**	-0.894**	-0.836*	0.897**	0.852**	-0.852**	0.841*	-0.461
Solar intensity	0.910**	0.931**	0.947**	0.941**	0.956**	0.925**	0.767*	-0.928**	-0.892**	0.892**	0.867*	0.526

**Significant at 1% level, *significant at 5% level

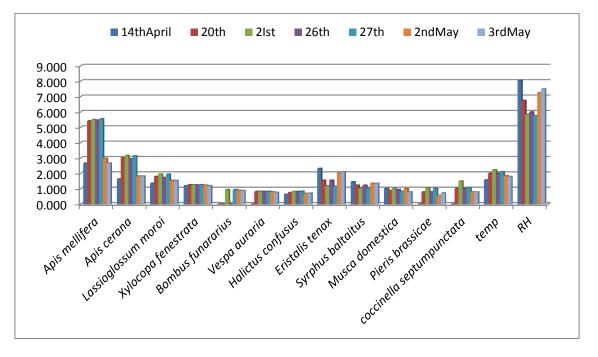


Fig. 3: Intensity and period of activity of insect visitors on Red Delicious cultivar of apple in district Baramulla

Lasioglossum moroi (r=+0.96, +0.95, -0.88), Xylocopa fenestrata (r=+0.93, +0.94, -0.88), Bombus funerariu (r=+0.95, +0.95, -0.90), Halictus confusus (r=+0.79, +0.76, -0.83), Vespa auraria Smith (r=+0.92, +0.92, -0.89) and Pieris brassicae (r=+0.91, +0.86, -0.84) was significantly and positively correlated with temperature and light intensity and negatively correlated with relative humidity. Whereas, significant and negative correlation was found with respect to activity with temperature and light intensity, and positive correlation with relative humidity was recorded for *Eristalis tenax* (L.) (r=-0.94, -0.92, +0.89), *Syrphus balteatus* De Geer (r=-0.92, -0.89, +0.85) and *Musca domestica* (r=-0.96, -0.86, +0.84). However the activity of *Coccinella septumpunctata* L.(r=+0.47, +0.52, -0.46) was positively correlated with temperature and light intensity and negatively correlated with relative humidity but the effect was non- significant

4. Pooled Seasonal activity of apple pollinators in relation to weather parameters during 2011 and 2012

Copyright © March-April, 2018; IJPAB

Mushtaq *et al*

ISSN: 2320 - 7051

to pooled activity Data pertaining of pollinators (Table 5) in relation to weather parameters revealed that the activity and intensity of hymenoptera, lepidoptera and coleopteran pollinators like Apis mellifera L., Apis cerana indica F., Lasioglossum moroi, Xylocopa fenestrata F., Halictus confusus, Bombus funerarius, Vespa aurari and Pieris brassicae was observed maximum during 3rd week of April when the mean temperature and relative humidity was 21.46°C and 59.50 per cent, respectively. However, peak activity and intensity of diptera pollinators were maximum during 2nd week of April, when the temperature and relative humidity was 17.10°C 6 and 77.8 per cent.

The correlation coefficient matrix of apple pollinators in relation to weather parameters illustrated that hymenopterans and lepidopterans showed significant and positive correlation with temperature and light intensity and negative correlation with relative humidity. However, vice versa was observed for dipterans. Such a relationship has also been amply observed by Verma and Dulta¹³ ,Dashad² and Knoxfield⁵ who reported the honey bee (Apis mellifera, Apis cerana indica F.) activity increased with an increase in temperature and peaked between 19-25°C and decreased as the relative humidity increases beyond 60 per cent. Similarly, Vincens and Bosch¹⁵ reported that number of bees taking foraging trips increased sharply, as the temperature continues to raise upto 25°C. The study demonstrates that each bee has a specific ecological threshold for activity which differs inter and intra specifically depending upon the level of adaptation. The bee species differ in their responses to climatic conditions and are indicative of their different physiological adaptation and partitioning of food sources in sympatric conditions e.g.in Apis cerana Indica F. and Apis mellifera L., air temperature act as stimulus for commencement of activity while cessation was controlled by light intensity⁷ while in Dipteran flies moist conditions are more preferred for activity than drier sites⁸. In addition, their activity may be influenced by relative competition among different insect visitors as also supported by Samida, F. and Elbanna¹⁰.

Pollinators	Maximum period of activity	Maximun mean polpulation	Temperature (°C)	Relative humidity (%)							
Apis mellifera	3 nd week of April to May	4.84± 0.34	21.46±0.46	59.50±1.52							
Apis cerana	3 nd week of April to May	3.8 ± 0.32	21.46±0.46	59.50±1.52							
Xylocopa fenestrate	3 nd week of April to May	1.20± 0.41	21.46±0.46	59.50±1.52							
Bombus funerarius Smith	4 th week of April to May	1.21±0.34	21.46±0.46	59.50±1.52							
Vespa auraria Smith	3 nd week of April to May	0.80±0.02	21.46±0.46	59.50±1.52							
Lasioglossum sp.	3 nd week of April to May	2.54±0.41	21.46±0.46	59.50±1.52							
Eristalis tenax (L.)	2 nd week of April to May	2.37±0.22	17.10±0.66	77.8±1.45							
Syrphus balteatus De Geer	2 nd week of April to May	1.72±0.15	17.10±0.66	77.8±1.45							
Musca domestica	2 nd week of April to May	1.25±0.16	17.10±0.66	77.8±1.45							
Halictus sp.	3 nd week of April to May	0.99±0.09	21.46±0.46	59.50±1.52							
Pieris brassicae	3 rd week of April to May	1.07±0.15	21.46±0.46	59.50±1.52							
Coccinella septumpunctata L.	3 rd week of April to May	1.411±0.08	21.46±0.46	59.50±1.52							

 Table 5: Seasonal abundance of apple pollinators in relation to weather parameters in Kashmir Valley (Pooled)

Values are Mean±S.E of 10 observations

Copyright © March-April, 2018; IJPAB

Mushtaq *et al*

REFERENCES

- Abrol, D.P. and Kumar, A., Foraging activity of Apis species on strawberry blossoms as influenced by pesticides. *Pak. Entomol.* 31(1): 57-64 (2009).
- Dashad, S.S. Pollination studies on apple (*Malus domestica* Borkh) with particular reference to role of honeybees. Ph.D. Thesis, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, H.P, India (1990).
- Dashad, S.S. and Sharma, J.K., Relative abundance of insect visitors on blooms of certain cultivars of apple (*Malus domestica* Borkh). Crop Research Hisar 6(3): 491-498 (1993).
- Joshi, N.C. and Joshi, P.C. 2010. Foraging Behavior of Apis sp. On Apple Flowers in Subtropical Environment. *New York Science Journal* 3(3): 71-74 (2010).
- Knoxfield, R.G., Honey bee pollination of fruit tree crops. *Agriculture Notes*, State of Victoria, Department of Natural Resources and Environment, AG-0092 (2002).
- Kumar, J., Insect pollinators in temperate fruits during bloom. *Journal of Tree Science* 7: 38-40 (1988).
- Lee, M.L., Choi, S.A. and Cho, Y.H., Diurnal activity of Honeybees (*Apis mellifera*) at the hive entrance. *Korean Journal of Apiculture* 2: 117-121 (1987).
- Loken, A., Flower visiting insects and their importance as pollinators. *Bee World* 62: 130-140 (1981).
- 9. Raj, H., Mattu, V.K. and Thakur, M.L., Pollinator diversity and relative abundance

of insect visitors on apple crop in shimla hills of western himalaya, India. *International Journal of Science and Nature* **3(3):** 507-513 (2012).

- Samida, F. and Elbanna, S., Impact of Introduced honeybees on Native bees at St. Katherine Protectorate, South Sinai, Egypt. *International Journal of Agriculture and Biology* 8(2): 191-194 (2006).
- Somervilla, D. and White, B., Pollination of apple by honey bees. *Agnote* DAI-132, NSW Department of Primary Industry (2005).
- Thakur, B., Pollinator diversity of temperate fruit crops in Shimla hills of Himachal Pradesh. M. Phill. Thesis Himachal Pradesh, University, Shimla, India (2005).
- Verma, L.R. and Chauhan, P., Distribution, abundance and diversity of insect pollinators in apple orchards of Shimla hills. *Indian Journal of Ecology* 12(2): 286-292 (1985).
- Verma, L.R. and Dulta, P.C., Foraging behavior of *Apis cerana indica* and *Apis mellifera* L. in pollinating apple flowers. *Journal of Apicultural Research* 25(4): 197-201 (1986).
- 15. Vicens, N. and Bosch, J., Weatherdependent pollinator activity in an apple orchard, with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environmental Entomology 29(3): 413-420 (2000).